SILYMARIN: REVIEW ON OVERALL DEVELOPED FORMULATIONS AND ANALYTICAL METHODS

¹ Santoshi Deshmukh, ²Abhijit Kulkarni, ³Shubhada Dube, ⁴Pankaj Deshmukh, ⁵Vitthal Gunjal.

¹M.Pharm 2nd yr , ²Assistant professor, ^{3,4,5}M.Pharm 2nd yr.

¹Quality Assurance,

¹Sanjivani College Of Pharmaceutical Education And Research, Kopargaon, Ahmednagar, India.

Abstract : Silymarin is flavonoid obtained from Silybum marianum plant. It is used as hepatoprotective, antioxidant, antiinflammatory, hypolipidemic, and anti-carcinogenic properties[44]. Silymarin is BSC II class drug contains eight flavonolignans which having poor aqueous solubility due to this it rapidly excreted in bile and urine and poor bioavailability of these flavonolignans after oral route administration due to phase II metabolism, therefore in this review a potential approach to enhance solubility, bioavailability and to develop a robust formulation and scientific aspects from past to present is studied . In cancer treatment Nanomaterials are frequently used as drug carriers [12]. There is a need to have a selective and accurate analytical method for qualitative and quantitative estimation of silymarin flavonolignan elements[a]. Silymarin containing products have an important role in the quality control of milk thistle-based products. Due to the low concentrations of analytes, especially pharmacological and pharmacokinetic studies require more and more selective and sensitive, advanced techniques [N]. Therefore, the scope of this review was to develop a better understanding of the problems associated with silymarin and approaches to overcome the difficulties to develop a better and stable formulation for food and pharmaceutical applications.

KEY WORDS: silymarin, hyphenated techniques, formulation, pharmacological activity.

Introduction : Silymarin is commonly named as milk thistle which is chemically known as 2-(2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-1,4-benzodioxin-6-yl)-2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one relating to the family Asteraceae(1)

So for Silymarin is used as Antiflammatory activity, Hepatoprotective activity, Anticancer, Immunostimulatory, Antiasthmatic, neuroprotective, prevent the gastrointestinal problem, anti-diabetes, skin protection, modulate drug transport in multidrug resistance.[47] (2)Due to these pharmacological activity silymarin newly having attention. Therefore in this review, we have summarized silymarin formulation and analytical method for understanding & overcome problems associated with formulation hence in future we are able to develop stable formulation and its roust analytical method development (1)

Pharmacokinetics and bioavailability: [sylibin pdf]

Silymarin is hydrophobic & non-ionizable in nature, elimination half-life is 6 hours excreted in unchanged form in bile and urine .which having water solubility is less than 50 μ g/ml which has great influence on bioavailability which makes challenging in the formulation. After oral administration 240mg of silymarin rapidly absorb from stomach with Tmax about 1.8-1.9hour and t1/2 about 2.5-3.8 hours, C max 2.9 \pm 0.3 μ g/ml,area under curve 10.8 \pm 0.4 μ g/ml ×h because of these problem silymarin need formulate in Nanomaterials or phytosomes having some advantages as drug carriers are increasing water solubility , dissolution of drug in bloodstream is protected, improving the pharmacokinetic and pharmacological properties and targeted drug delivery was achieved (3). (9,10)(60,61)

FORMULATIONS ASPECTS: Enhancement of solubility, bioavailability of drug is very challenging task of drug developments process. The solubility & dissolution property of drug playan important role in formulation. this problem of poor solubility & bioavailability is major challenge for formulation which can be solved by following some summarized formulation techniques

Formulation	Preparation method	Component of	Research highlights	Reference
		formulation		
		TABLETS		
Fast dissolving tablet	Dry granulation method	Cross povidone,	fast dissolving tablet	Brij Mohan et . al
		Microcrystalline	(FDT) with improve	(2014)
		Cellulose, Croscarmellose	patient compliance	
		sodium,Aerosil	and convenience	
Microporous osmotic		Dibutyl phthalate, soybean	Sustained and controlled-	Qi-ping Zeng et al
pump tablets		lecithin,sodium chloride,	release drug delivery	(4)
pump moleus		lactose, mannitol	Telease drug denvery	
Floating tablets	Wet granulation	HPMC, MC, crospovidone	Prolong gastric residence	Garg and Gupta
Floating tablets	wet granulation	HFMC, MC, crospovidone	time	Garg and Gupta
Osmotic tablets	Melt fusion	Cellulose acetate	Controlled release of	Xie et al (2013)
Osmotic tablets	Wielt Iusion	Cellulose acetate		Ale et al (2015)
T			silymarine components	L (1 (2007)
Erodible matrix	Melt fusion	GMS,PEG-6000,	Controlled release of	Lu et al. (2007)
tablets		Poloxamer-188	silymarine	
			components	
Solid dispersion	Direct compression	HP-β-CD	Enhance dissolution and	Yanyu et al (2006a)
tablets			oral bioavailability	
		EMULSION		
Emulsion	Membrane	Poly(<mark>lactic-co-glycolic</mark>	Improve encapsulation	Emma Piacentini1
	emulsification	acid) (PLGA),	efficiency and drug	et al
		Polycaprolactone (PCL),	loading.	(2017)
		Sodium Alginate, Chitosan,		
		poly(Llactide)		
		(PL <mark>LA),</mark> Eudragit,		
Nano emulsion	Aqueous titration	Sefsol 218,	efficient carrier for oral	Usama Ahmad
	method	KolliphorRH40	delivery of	(2017)(5)
		,polyethylene glycol 400	silymarin against human	
			hepatocellular carcinoma	
			without damaging normal	
Nano emulsion	Spontaneous	Sefsol-218, tween-80,	Enhance bioavailability	Parveen et al.
	emulsification	ethanol	and hepatoprotective	(2011a)(6)
			activity	
		SUSPENSION		
Nano suspension	Micro emulsion	BL, FL-40, Ethanol	Enhance stability	Hui and huihua
-	dilution			(2011)
		INCLUSION COMPLES		
Inclusion complex	Kneading method	β-CD	Enhanced dissolution and	Arcari et al(1992)
*	-		bioavailability	
Inclusion complex	Kneading, co-	β-CD	Enhanced dissolution and	Ghosh et al
menusion complex	precipitation and	p-CD	solubility	Gilosii et ai
	solvent evaporation		soluoliity	
	sorvent evaporation			

Inclusion complex	physical mixing and	Fulvic acid,	improve the solubility and	Shamama Javed et
menusion complex	kneading methods	i uivie acia,	dissolution profile	al (7)
Dhogpholinida	_	nhosnholinid	Enhanced dissolution and	ai (7)
Phospholipids	Solvent evaporation	phospholipid		
complex			bioavailability	
Phytosomal complex	-	phosphatidylcholine	Enhanced bioavailability	
		SOLID DISPERSION		
Solid dispersion	Fusion method	PEG-6000	Enhanced dissolution rate	Li et al (2002), Li
				and Hu (2004)
solid dispersion	spray drying and co-	HPMC E 15LV,	enhanced silymarin	DALWADI
	precipitation methods		dissolution	SONALI et al (8)
Solid dispersion	Fluid bed techniques	PVP	Enhanced dissolution rate	Sun et al (2008a)
Solid dispersion	Fluid bed techniques	PVP	Enhanced oral	Sun et al (2008) (6)
			bioavailability	
Solid dispersion	Kneading, spray drying	НРМС	Enhanced dissolution rate	Sonali et al (2010)
	, co precipitation			
solid dispersion	supercritical fluids	PVP K30, HPMC K4M and	improve the dissolution	Gang Yang
	method	HPMC K15M, Carbon	and bioavailability	et al (9)
		dioxide		
solid dispersion	spray drying and co-	HPMC E 15LV,	enhanced silymarin	DALWADI
	precipitation methods		dissolution	SONALI et al (8)
		SOLID- LIPID NANO-		
		PARTICLES		
SLNs	High pressure	-	Enhanced biodistribution	Parveen et
	homogenization			al(2011a,(6)
SLNs	Lyophilization	Compritol -888ATO,	Enhanced biodistribution	He et al(2005,2007)
		lecithin, Poloxamer-188	and bioavailability	
SLNs	High pressure	Brij 87, stearic acid	Controlled release of	Zhang et al (2007)
2110		J		Z_{Hallg} et al (2007)
~~~~	homogenization		silibinin	Zhang et al (2007)
SLNs		Compritol -888ATO,	silibinin Physicochemical	Raffa et al (2010)
	homogenization			
	homogenization	Compritol -888ATO,	Physicochemical	
SLNs	homogenization Cold homogenization	Compritol -888ATO, poloxamer-188 NANO-PARTICLES	Physicochemical characterization	Raffa et al (2010)
	homogenization Cold homogenization modified	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co-	Physicochemical characterization improve the overall	Raffa et al (2010) Yunchang Xie
SLNs	homogenization Cold homogenization modified emulsification/	Compritol -888ATO, poloxamer-188 NANO-PARTICLES	Physicochemical characterization improve the overall entrapment efficiency and	Raffa et al (2010)
SLNs	homogenization Cold homogenization modified emulsification/ solvent evaporation	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co-	Physicochemical characterization improve the overall	Raffa et al (2010) Yunchang Xie
SLNs PLGA nanoparticles	homogenization Cold homogenization modified emulsification/	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co-	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio	Raffa et al (2010) Yunchang Xie Et al (10)
SLNs PLGA nanoparticles Solid Lipid	homogenization Cold homogenization modified emulsification/ solvent evaporation	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide),	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al
SLNs PLGA nanoparticles	homogenization Cold homogenization modified emulsification/ solvent evaporation	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide),	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio	Raffa et al (2010) Yunchang Xie Et al (10)
SLNs PLGA nanoparticles Solid Lipid	homogenization Cold homogenization modified emulsification/ solvent evaporation	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide),	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al
SLNs PLGA nanoparticles Solid Lipid Nanoparticles	homogenization Cold homogenization modified emulsification/ solvent evaporation method	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide),	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and capacity loading.	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al (11)
SLNs PLGA nanoparticles Solid Lipid Nanoparticles Eudragit loaded	homogenization Cold homogenization modified emulsification/ solvent evaporation method -	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide), - - Eudragit RS100 Eudragit	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and capacity loading. to improve the low	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al (11) Amira E. El-Nahas
SLNs PLGA nanoparticles Solid Lipid Nanoparticles Eudragit loaded	homogenization Cold homogenization modified emulsification/ solvent evaporation method -	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide), - - Eudragit RS100 Eudragit RL100, Polyvinyl alcohol,	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and capacity loading. to improve the low bioavailability of	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al (11) Amira E. El-Nahas
SLNs PLGA nanoparticles Solid Lipid Nanoparticles Eudragit loaded	homogenization Cold homogenization modified emulsification/ solvent evaporation method -	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide), - - Eudragit RS100 Eudragit RL100, Polyvinyl alcohol, Hydroxypropyl methyl	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and capacity loading. to improve the low bioavailability of silymarin through buccal	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al (11) Amira E. El-Nahas
SLNs PLGA nanoparticles PLGA nanoparticles Solid Lipid Nanoparticles Eudragit loaded nanoparticles	homogenization Cold homogenization modified emulsification/ solvent evaporation method - nanoprecipitation technique	Compritol -888ATO, poloxamer-188 NANO-PARTICLES Poly(D,L-lactide-co- glycolide), - - Eudragit RS100 Eudragit RL100, Polyvinyl alcohol, Hydroxypropyl methyl cellulose	Physicochemical characterization improve the overall entrapment efficiency and to reduce the escaping ratio improve the stability and capacity loading. to improve the low bioavailability of silymarin through buccal delivery.	Raffa et al (2010) Yunchang Xie Et al (10) Neda Naseri Et al (11) Amira E. El-Nahas et al (12)

		NANOCRYSTAL		
Nanocrystals	high pressure	hydroxypropyl-β-CyD	enhanced dissolution rate	Risako Onodera et
	crystallizer		and	al (14)
			absorbability	
		NANOSTRUCTURES		
		LIPID CARRIER		
Nanostructured		Glycerol	In vivo study revealed high	Chaudhary S,
lipid carriers		monostearate	accumulation of drug in	
		Oleic acid Tween 80	liver	
			after encapsulation in	
			NLCs	
Binary lipids-based	high-pressure	Oleic acid ,Tween-80,	improve the oral	Mingzhu
nanostructured lipid	homogenization		bioavailability of	Shangguan
Carriers			silymarin	Et al(13)
Topical	Hot high-pressure	Glycerolmon,Oleic	enhanced solubility and	
nanostructured lipid	homogenization	Acid,carbopol 980	stability of silymarin and	Pooja Singh et al
carrier	process.		greater permeation into the	(15)
			affected cell	
Nanostructured lipid	Hot high-pressure	Compritol ATO 888,	increase	Pooja Singh et al
carriers:	homogenization	Pluronic F-68	the therapeutic value by	(16)
	process.		better permeation,	
			anticancer action	
			and reduced toxicity	
		LIPOSOMES		
Liposome	supercritical fluid	Soybean	to improve the dissolution	Gang Yang
	technology	phosph <mark>atidylc</mark> holine, SGC,	and bioavailability of	et al
			silymarin	
Liposome	Ethanol injection	Cholesterol	Ehnaced hepatoprotective	Maheshwari et al
			and gastroprotective effect	(2003)
Liposome	Reversed evaporation	Lecithin, cholesterol,	Ehnaced hepatoprotective	EI- Samligy et al
	techniques	stearyl amine, tween-80.	effect.	(2006)

Liposome	-	$\rho$ -amino phenyl- $\beta$ -D-	Targetting to hepatocyte	Dube et al (2010)
		Galactopyranoside		
Liposome	Film hydration	Lecithin, cholesterol e	Targetting to hepatocyte	Kumar et al (2014)
			and enhanced	
			bioavailability	
		PROLIPOSOMES		
Proliposome	simple dissolving	Soy-lecithin,	To improving silymarin's	Mei Wang et al
	process	DGalactosamine,SOD,	poor bioavailability	
		MDA,	and hepatoprotective	
		GSH-PX	effects	
Proliposomes	Film deposition	Phospholipid and mannitol	Enhanced bioavilability	Xiao et al (2005)
				and Yanyu et al

				(2006)		
		Cholesterol,egg lecithin,				
Nanoliposomes	extrusion method.	dioxane,SCDA	to evaluate efficacy of	Zohreh Faezizadeh		
			silymarin in free and	et al		
			nanoliposomal forms			
	film hydration	Soybean-lecithin	To increasing the	A.M.Mohsen		
Bilosomes	technique	phosphatidylcholine,	hepatoprotective activity	et al		
		Carbon tetrachloride	of the drug.			
		DENDRIMERS				
Dendrimer	Co-precipitation	EGCG, DMF, DCM, TFA	To enhance skin	P. K. Shetty et al		
			penetration and deposition	(2016) (17)		
Dendrimer	Solvent evaporation	PAMAM-G4, PEG,	To deliver the poorly	Carola Diaz, et al		
	method	TEA, THF, DMSO	soluble drug silybin	(2017)		
Carbon Nanotubes	non-covalent approach	Polysorbate20,	prolonged and sustained			
		Polysorbate80,	release of SB	Julia Meihua		
		Polyethylene		Tan(18)		
		glycol, Chitosan,				
MICROPARTICLES						
Micoparticle	Low energy	Lecithin, tween-20, tween-	Enhanced dissolution,	Abrol et al		
	emulsification	80, sp <mark>an-20, propyle</mark> ne	therapeutic efficiency and	(2004,2005)		
	techniques	glycol	bioavailability			
Floating microsphere	Wet granulation	HPMC, MC, crosspovidone	Prolong gastric residence	Garg and Gupta		
			time	(2009)		

#### ANALYTICAL PERSPECTIVE:

Separation of key components of silymarin is achieved by various techniques of analysis .many hyphenated techniques comes into existing which lead to successful identification of each components which are summarized below

Analytical method	Mobile phase /solvent	Wavelength	Purpose	Reference
		(nm)/Other		
		parameters		
1)Kinetic	Potassium permanganate	530	Develop kinetic	Rahman
spectrophotometry			spectrophotometric method	(et al. 2004)
			Rahman (et al. 2004)	(19)
2)UV–visible	Methanol	287	Develop and validate	Meghreji et al. (2010)
spectrophotometry			spectrophotometric method	[a]
3)UV	2,4-dinitrophenylhydrazine	490	Develop spectrophotometric	marianumDezs"o Csupor
spectrophotometry			method	(2016)
				(20)
4)TLC	Chloroform-acetone-formi	365	Develop TLC method	Wagner et al. (2006)
	acid			
	(75:16.5:8.5)			
5)TLC	Formicacid	296	Develop stability-indicating TLC	Ph. Eur. (2004)
	:acetone:methylene		method	
	chloride (8.5:16.5:75)			
6)HPTLC	Chloroform:acetone:	Wavelength-296	Develop stability-indicating	Parveen et al. (2010)
	Formic acid (9:2:1)	M.P- Chloroform-	HPTLC method	(21)
		acetone-formic acid		
		(9:2:1 v/v/v)		
7)HPLC	Water:	Wa <mark>veleng</mark> th-289	Develop stability-indicating	Quaglia et al. (1999)
	acetonitrile:methanol		HPLC	(6)
	at different proportion		method	
8)HPLC	KH2PO4:methanol:	288	Develop stability-indicating	Korany et al.
	acetonitrile at		HPLC method	(2013)
	different proportions			[1.s2.0s1]
9)HPLC	Methanol:NaH2PO4	288	Develop and validate HPLC	Hadad et al. (2009)
	(45:55)		method	
10)HPLC	Methanol:water:acetic	280	Develop stability-indicating	Cai et al. (2009)
	acid		HPLC method	(22)
	at different proportion			
11)HPLC	water and methanol	Wavelength-290	Develop and validate HPLC	Sunny Wallace(2003)
		Column- C18	method	(23)
		Temp 40°C		
		Flow rate - 0.75		
		ml/minute		

12)HPLC	(a) 0.1 % formic acid	Wavelength- 288 nm	Develop validate and optimized	Elizabeth Mudge(2015)
	in water and (b) 0.1 %	Column C ₁₈	method	(24)
	formic acid in			()
	80 % aqueous methanol			
	1			
13)HPLC	methanol and solvent	wavelength: 288 nm	Develop method for	Tian-ming Ding(2001)
	mixture (water:	column C18	determination of components	(25)
	dioxane=9:1)	flow rate: 1.5 ml/min;		
		column temp.: 40°C;		
14)HPLC –CE	Solvent A_Water acidified	Wavelenght -289 nm	Develop method for	M.G. Quaglia
	at	Column C ₁₈	determination of components	(1999)
	pH 2.3 with 10% H3PO4	Flow rate -1 ml /min		(6)
	solution; Solvent B_			
	acetonitrile; Solvent			
	C_methanol.			
15)HPLC-HPCE	100 mM boric	Wenthength-200 nm.	qualitative and quantitative	M.G. Quaglia
	acid until pH 9 and added	capillary having a total	data obtained by HPLC and HPCI	(1999)
	with 15% methanol, used	length of 43 cm	were compared.	(6)
	as background			
	electrolyte			
16)HPLC –MS	Formic acid:methanol	22 <mark>5 and</mark> 288	Develop HPLC-MS method	Kuki et al. (2012)
	at			(26)
	different proportions			
17)UHPLC	0.1% formic acid in MeOH	Wavelenght- 288	Develop method for	Tyler N. Grafa(2016)
	(B) and 0.1% formic acid	Column-C18	determination of components	(27)
	in H2O (A),	Flow rate-0.5 mL/min		
		Temp50°C		
19)UPLC-MS	Mobile phaseAwas water	Wavelenght 288	Develop rapid UPLC-MS method	Wang et al. (2010) (28)
	containing 0.1% formic	Coloumn - UPLC C18		
	acid. phase B was	flow rate - 0.25		
	MeOH containing 0.1%	mL/min.		
	formic acid.			
20)LC-MS	formic acid (A) and	Column-C18	Develop sensitive method for the	James I. Lee(2007)
	methanol/water/formic	flow rate of 0.2 mL/min	simultaneous	(29)
	acid (90:10:0.1, v/v/v) (B)	Temp.40°C		
21) GC-MS	Carrier gas-Helium	Column-capillary	Develop method for	D.IONESCU(2017)
		flow rate-1.5 ml/min.	determination of components	[T]
		Temp270°C		

#### **Reference:**

- 1. Ahmad U, Faiyazuddin M, Hussain MT, Ahmad S, M Alshammari T, Shakeel F. Silymarin: an insight to its formulation and analytical prospects. Acta Physiol Plant. 2015;37(11):1–17.
- 2. Abouzid S. from Milk Thistle. 2012;
- 3. Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep. 2017;38(2):611–24.

- 4. Zeng QP, Liu ZH, Huang AW, Zhang J, Song HT. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets. Drug Des Devel Ther. 2016;10:519–31.
- 5. Ahmad U, Akhtar J, Singh SP, Badruddeen B, Ahmad FJ, Siddiqui S, et al. Silymarin nanoemulsion against human hepatocellular carcinoma: development and optimization. Artif Cells, Nanomedicine Biotechnol. 2018;46(2):231–41.
- 6. Quaglia MG, Bossù E, Donati E, Mazzanti G, Brandt A. Determination of silymarine in the extract from the dried silybum marianum fruits by high performance liquid chromatography and capillary electrophoresis. J Pharm Biomed Anal. 1999;19(3–4):435–42.
- 7. Javed S, Kohil K, Ahsan W. Solubility and Dissolution Enhancement of Silymarin with Fulvic Acid. Int J drug Dev Res. 2016;8(1):9–14.
- 8. Sonali D, Tejal S, Vaishali T, Tejal G. Silymarin-solid dispersions: Characterization and influence of preparation methods on dissolution. Acta Pharm. 2010;60(4):427–43.
- 9. Yang G, Zhao Y, Feng N, Zhang Y, Liu Y, Dang B. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J Pharm Sci [Internet]. 2015;10(3):194–202. Available from: http://dx.doi.org/10.1016/j.ajps.2014.12.001
- 10. Xie Y, Yi Y, Hu X, Shangguan M, Wang L, Lu Y, et al. Synchronous microencapsulation of multiple components in silymarin into PLGA nanoparticles by an emulsification/solvent evaporation method. Pharm Dev Technol 2016;21(6):6729.
- 11. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv Pharm Bull [Internet]. 2015;5(3):305–13. Available from: http://dx.doi.org/10.15171/apb.2015.043
- 12. El-Nahas AE, Allam AN, El-Kamel AH. Mucoadhesive buccal tablets containing silymarin Eudragit-loaded nanoparticles: formulation, characterisation and ex vivo permeation. J Microencapsul [Internet]. 2017;34(5):463–74. Available from: http://dx.doi.org/10.1080/02652048.2017.1345996
- 13. Shangguan M, Lu Y, Qi J, Han J, Tian Z, Xie Y, et al. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J Biomater Appl. 2014;28(6):887–96.
- 14. Onodera R, Hayashi T, Nakamura T, Aibe K, Tahara K, Takeuchi H. Preparation of silymarin nanocrystals using a novel high pressure crystallization technique and evaluation of its dissolution and absorption properties. Asian J Pharm Sci [Internet]. 2016;11(1):211–2. Available from: http://dx.doi.org/10.1016/j.ajps.2015.11.031
- 15.Singh P, Arya M, Kanoujia J, Singh M, Gupta KP, Saraf SA. Design of topical nanostructured lipid carrier of silymarin and its effect on 7,12-dimethylbenz[a] anthracene (DMBA) induced cellular differentiation in mouse skin. RSC Adv. 2016;6(88):84965–77.
- 16. Singh P, Singh M, Kanoujia J, Arya M, Saraf SK, Saraf SA. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Deliv Transl Res [Internet]. 2016;6(5):597–609. Available from: http://dx.doi.org/10.1007/s13346-016-0317-8

17. Shetty PK, Manikkath J, Tupally K, Kokil G, Hegde AR, Raut SY, et al. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition. AAPS PharmSciTech [Internet]. 2017; Available from: http://link.springer.com/10.1208/s12249-017-0718-0

Tan JM, Karthivashan G, Gani SA, Fakurazi S, Hussein MZ. In vitro drug release characteristic and cytotoxic activity of silibinin-loaded single walled carbon nanotubes functionalized with biocompatible polymers. Chem Cent J. 2016;10(1):1–12.
 Rahman N, Khan NA, Azmi SNH. Kinetic spectrophotometric method for the determination of silymarin in pharmaceutical formulations using potassium permanganate as oxidant. Pharmazie. 2004;59(2):112–6.

- 20. Csupor D, Csorba A, Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J Pharm Biomed Anal. 2016;130:301–17.
- 21. Parveen R, Ahmad S, Baboota S, Ali J, Alka A. Stability-indicating HPTLC method for quantitative estimation of silybin in bulk drug and pharmaceutical dosage form. Biomed Chromatogr. 2010;24(6):639–47.
- 22. Cai XL, Li DN, Qiao JQ, Lian HZ, Wang SK. Determination of silymarin flavonoids by HPLC and LC-MS and investigation of extraction rate of silymarin in silybum marianum fruits by boiling water. Asian J Chem. 2009;21(1):63–74.
- 23. Wallace, S.; Carrier, D. J.; Beitle, R. R.; Clausen, E. C.; Griffis CL. HPLC-UV and LC-MS-MS characterization of silymarin in milk thistle seeds and corresponding products. J nutraceuticals, Funct Med foods [Internet]. 2003;4(2):37–48. Available
- from:
- 24. Mudge E, Paley L, Schieber A, Brown PN. Optimization and single-laboratory validation of a method for the determination of flavonolignans in milk thistle seeds by high-performance liquid chromatography with ultraviolet detection. Anal Bioanal Chem. 2015;407(25):7657–66.
- 25. Ding T ming, Tian S jiu, Zhang Z xing, Gu D zhao, Chen Y fei, Shi Y hua, et al. Determination of active component in silymarin by RP-LC and LC/MS. J Pharm Biomed Anal. 2001;26(1):155–61.
- 26. Kuki Á, Nagy L, Deák G, Nagy M, Zsuga M, Kéki S. Identification of silymarin constituents: An improved HPLC-MS method. Chromatographia. 2012;75(3–4):175–80.
- 27. Graf TN, Cech NB, Polyak SJ, Oberlies NH. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts. J Pharm Biomed Anal [Internet]. 2016;126:26–33. Available from: http://dx.doi.org/10.1016/j.jpba.2016.04.028
- 28. Wang K, Zhang H, Shen L, Du Q, Li J. Rapid separation and characterization of active flavonolignans of Silybum marianum by ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry. J Pharm Biomed Anal [Internet]. 2010;53(4):1053–7. Available from: http://dx.doi.org/10.1016/j.jpba.2010.07.003
- 29. Lee JI, Narayan M, Barrett JS. Analysis and comparison of active constituents in commercial standardized silymarin extracts by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2007;845(1):95–103.